SGLang Backend

Authored By SGLang RL Team and listed alphabetically by last name

Jingyi Chen, Yitong Guan, Zhuobin Huang, Jiajun Li, Ji Li, Shenggui Li, Junrong Lin, Xiang Long, Rui Lu, Jin Pan, Shuai Shi, Yushen Su, Xinyuan Tong, Chendong Wang, Hanchen Zhang, Haoran Wang, Yongan Xiang, Chengxing Xie, Yuhao Yang, Jinwei Yao, Qiaolin Yu, Yuzhen Zhou, Chenyang Zhao

Introduction

SGLang is an open-source state-of-the-art inference service engine, fully adopted by xAI to support all inference needs of Grok during research and serving processes.

Currently, verl fully supports using SGLang as the inference engine during the rollout phase. As a rollout engine, SGLang provides the same feature coverage as vLLM., including memory saving and multi-node rollout features. After installing verl and SGLang, simply add actor_rollout_ref.rollout.name=sglang at startup script to seamlessly switch between the two inference frameworks.

In addition, the SGLang team is actively working on supporting features such as Multi-Turn Agentic RL, VLM RLHF, Server-Based RLHF, and Partial Rollout. You can track the related development progress in the Tracking Roadmap.

Installation

Please always follow the following command to install SGLang with verl.

pip install --upgrade pip
# Currently 0.4.6.post5, subject to updates at any time, please refer to the latest version specified in `setup.py`
pip install -e ".[sglang]"

You can check the following dependencies are in your environment:

Note

  • PyTorch: 2.6.0+cu124

  • CUDA: 12.4

  • flashinfer-python: 0.2.5+cu124torch2.6

  • sgLang: 0.4.6.post5

  • sgl-kernel: 0.1.4

Using SGLang as the Inference Backend for PPO Training on a Single Machine

We use Qwen/Qwen2-7B-Instruct on the gsm8k dataset for a simple test.

  1. Run the following command to prepare the gsm8k dataset:

python3 examples/data_preprocess/gsm8k.py
  1. Run the following script to conduct a PPO experiment on a single machine with 4 GPUs:

export SGL_DISABLE_TP_MEMORY_INBALANCE_CHECK=True
PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \
    data.train_files=$HOME/data/gsm8k/train.parquet \
    data.val_files=$HOME/data/gsm8k/test.parquet \
    data.train_batch_size=4096 \
    data.max_prompt_length=4096 \
    data.max_response_length=4096 \
    actor_rollout_ref.rollout.name=sglang \
    actor_rollout_ref.model.path=Qwen/Qwen2-7B-Instruct \
    actor_rollout_ref.actor.optim.lr=1e-6 \
    actor_rollout_ref.actor.ppo_mini_batch_size=64 \
    actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
    actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
    actor_rollout_ref.model.enable_gradient_checkpointing=True \
    actor_rollout_ref.actor.fsdp_config.param_offload=True \
    actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
    actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
    actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
    actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
    critic.optim.lr=1e-5 \
    critic.model.path=Qwen/Qwen2-7B-Instruct \
    critic.ppo_micro_batch_size_per_gpu=4 \
    critic.model.fsdp_config.param_offload=True \
    critic.model.fsdp_config.optimizer_offload=True \
    algorithm.kl_ctrl.kl_coef=0.001 \
    trainer.logger=['console'] \
    trainer.val_before_train=False \
    trainer.default_hdfs_dir=null \
    trainer.n_gpus_per_node=4 \
    trainer.nnodes=1 \
    trainer.save_freq=-1 \
    trainer.test_freq=10 \
    trainer.total_epochs=15 2>&1 | tee verl_demo.log

Why export SGL_DISABLE_TP_MEMORY_INBALANCE_CHECK?

  1. verl initializes a SGLangRollout module during rollout, which is used to evaluate/generate samples.

  2. SGLangRollout will initialize Engine, and further initialize a torch.distributed.DeviceMesh, used to support Tensor Parallel (TP).

  3. DeviceMesh.init() internally checks the free GPU memory of all participating devices. If the difference is too large (more than ~10%), it directly reports an error to avoid initialization failures or deadlocks.

Why might there be inconsistent GPU memory?

1. Ray Distributed Actor loads the model at different times

verl uses Ray-based multi-process, multi-GPU concurrent training. Each WorkerDict may be called at different times:

self.rollout = SGLangRollout(...)

Different workers initialize the model at different times → different memory usage.

2. Delayed initialization causes memory bias

Some workers start model loading/inference (e.g., generate_sequences(), compute_log_prob()) earlier than others. Early workers already use up GPU memory → late workers still have empty memory → memory difference appears.

3. SGLang’s TP init uses ā€œall-device broadcastā€, but there’s no uniform release timing

Although SGLangRollout may only involve subset of GPUs, its Engine initialization calls torch.distributed.init_process_group() and broadcasts weights, so:

  • Non-rollout GPUs also join the communication.

  • Later on, DeviceMesh init will fail due to ā€œinconsistent memoryā€.

4. Different FSDP/TP loading behaviors also lead to mismatch

If using:

actor.fsdp_config.param_offload=True
ref.fsdp_config.param_offload=True

Then some workers keep params on CPU while others already sharded to GPU → leads to asymmetric memory layout.

Using SGLang as the Inference Backend for PPO Training Across Multiple Machines

SGLang also supports running verl’s RAY-based cross-machine inference in IPv4 and IPv6 scenarios. In the script below, we use TP=16 for cross-machine inference. Suppose we have two interconnected machines: node0 with IP 10.94.16.4 and node1 with IP 10.94.16.5.

  1. Start Ray on node0:

ray start --head --dashboard-host=0.0.0.0

You will see the following prompt:

Usage stats collection is enabled. To disable this, add `--disable-usage-stats` to the command that starts the cluster, or run the following command: `ray disable-usage-stats` before starting the cluster. See https://docs.ray.io/en/master/cluster/usage-stats.html for more details.

Local node IP: 10.94.16.4

--------------------
Ray runtime started.
--------------------

Next steps
To add another node to this Ray cluster, run
    ray start --address='10.94.16.4:6379'
  1. Have node1 join the Ray cluster:

Run the following command on node1:

ray start --address='10.94.16.4:6379'

Run the following command to confirm that the Ray cluster now has two nodes:

ray status

You can see that the cluster has two nodes with 16 GPUs:

======== Autoscaler status: 2025-04-09 09:25:37.694016 ========
Node status
---------------------------------------------------------------
Active:
 1 node_ef382ffd687d8f6b060c1b68e63ada7341b936fe5b1901dd04de1027
 1 node_1eb4d7d07e793114c23a89d1a41f1f76acf6ef5b35af844a4ee8e4ba
Pending:
 (no pending nodes)
Recent failures:
 (no failures)

Resources
---------------------------------------------------------------
Usage:
 0.0/360.0 CPU
 0.0/16.0 GPU
 0B/3.39TiB memory
 0B/372.53GiB object_store_memory
  1. Run the following script to train meta-llama/Llama-3.1-8B-Instruct with TP=16 across 2 machines using 16 GPUs:

DATA_DIR=$HOME/data/gsm8k

python3 -m verl.trainer.main_ppo \
    actor_rollout_ref.rollout.name=sglang \
    data.train_files=$DATA_DIR/train.parquet \
    data.val_files=$DATA_DIR/test.parquet \
    data.train_batch_size=4096 \
    data.max_prompt_length=4096 \
    data.max_response_length=4096 \
    actor_rollout_ref.model.path=meta-llama/Llama-3.1-8B-Instruct \
    actor_rollout_ref.actor.optim.lr=1e-6 \
    actor_rollout_ref.model.use_remove_padding=True \
    actor_rollout_ref.actor.ppo_mini_batch_size=64 \
    actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=16 \
    actor_rollout_ref.model.enable_gradient_checkpointing=True \
    actor_rollout_ref.actor.fsdp_config.param_offload=True \
    actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
    actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \
    actor_rollout_ref.rollout.tensor_model_parallel_size=16 \
    actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
    actor_rollout_ref.rollout.free_cache_engine=True \
    actor_rollout_ref.ref.log_prob_micro_batch_size=16 \
    actor_rollout_ref.ref.fsdp_config.param_offload=True \
    critic.optim.lr=1e-5 \
    critic.model.use_remove_padding=True \
    critic.model.path=meta-llama/Llama-3.1-8B-Instruct \
    critic.model.enable_gradient_checkpointing=True \
    critic.ppo_micro_batch_size=16 \
    critic.model.fsdp_config.param_offload=True \
    critic.model.fsdp_config.optimizer_offload=True \
    algorithm.kl_ctrl.kl_coef=0.001 \
    trainer.critic_warmup=0 \
    trainer.logger=['console'] \
    trainer.val_before_train=True \
    trainer.default_hdfs_dir=null \
    trainer.n_gpus_per_node=8 \
    trainer.nnodes=2 \
    trainer.save_freq=-1 \
    trainer.test_freq=10 \
    trainer.total_epochs=15 2>&1 | tee verl_demo.log