Multinode Training
Author: Xibin Wu, Yusheng Su.
Manual
Set up multinode ray cluster
Start head node with
ray start --head --dashboard-host=0.0.0.0
, there’re 2 address you should care about:
GCS address:
ray start --address=<address>
, where worker node should connect to.Dashboard address:
<address>:8265
, where you should submit job to the cluster.

Start worker node with
ray start --address=<address>
you get above.

Now you should see the cluster have 2 nodes with
ray status
.

Additionally, you can access dashboard in the browser with the address you get above.
Firewall rules maybe need configure to access the dashboard, if there’s any trouble, please contact your network administrator.

Submit job to ray cluster
Submit ray job to cluster with the dashboard address you get above.
ray job submit --address="http://127.0.0.1:8265" \
--runtime-env=verl/trainer/runtime_env.yaml \
--no-wait \
-- \
python3 -m verl.trainer.main_ppo \
trainer.n_gpus_per_node=8 \
trainer.nnodes=2 \
...

Then you can check the job status with the following commands:
ray job list: list all jobs submitted to the cluster.
ray job logs <Submission ID>: query the logs of the job.
ray job status <Submission ID>: query the status of the job.
ray job stop <Submission ID>: request the job to be stopped.
You can also access driver/task/actor logs in
/tmp/ray/session_latest/logs/
, driver log isjob-driver-raysubmit_<Submission ID>.log
.We strongly recommend you to view job detail from dashboard in multinode training, because it provide more structure way to view the job information.


Slurm
TBD
dstack
dstackai/dstack is an open-source container orchestrator that simplifies distributed training across cloud providers and on-premises environments without the need to use K8S or Slurm.
Prerequisite
Once dstack is installed, initialize the directory as a repo with dstack init
.
mkdir myproject && cd myproject
dstack init
Create a fleet
Before submitting distributed training jobs, create a dstack fleet.
Run a Ray cluster task
Once the fleet is created, define a Ray cluster task, e.g. in ray-cluster.dstack.yml
:
type: task
name: ray-verl-cluster
nodes: 2
env:
- WANDB_API_KEY
- PYTHONUNBUFFERED=1
- CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
image: whatcanyousee/verl:ngc-cu124-vllm0.8.5-sglang0.4.6-mcore0.12.0-te2.2
commands:
- git clone https://github.com/volcengine/verl
- cd verl
- pip install --no-deps -e .
- pip install hf_transfer hf_xet
- |
if [ $DSTACK_NODE_RANK = 0 ]; then
python3 examples/data_preprocess/gsm8k.py --local_dir ~/data/gsm8k
python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2.5-7B-Instruct')"
ray start --head --port=6379;
else
ray start --address=$DSTACK_MASTER_NODE_IP:6379
fi
# Expose Ray dashboard port
ports:
- 8265
resources:
gpu: 80GB:8
shm_size: 128GB
# Save checkpoints on the instance
volumes:
- /checkpoints:/checkpoints
Now, if you run this task via dstack apply, it will automatically forward the Ray’s dashboard port to localhost:8265.
dstack apply -f ray-cluster.dstack.yml
As long as the dstack apply is attached, you can use localhost:8265 to submit Ray jobs for execution
Submit Ray jobs
Before you can submit Ray jobs, ensure to install ray locally:
pip install ray
Now you can submit the training job to the Ray cluster which is available at localhost:8265
:
$ RAY_ADDRESS=http://localhost:8265
$ ray job submit \
-- python3 -m verl.trainer.main_ppo \
data.train_files=/root/data/gsm8k/train.parquet \
data.val_files=/root/data/gsm8k/test.parquet \
data.train_batch_size=256 \
data.max_prompt_length=512 \
data.max_response_length=256 \
actor_rollout_ref.model.path=Qwen/Qwen2.5-7B-Instruct \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
critic.optim.lr=1e-5 \
critic.model.path=Qwen/Qwen2.5-7B-Instruct \
critic.ppo_micro_batch_size_per_gpu=4 \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.project_name=ppo_training \
trainer.experiment_name=qwen-2.5-7B \
trainer.val_before_train=False \
trainer.default_hdfs_dir=null \
trainer.n_gpus_per_node=8 \
trainer.nnodes=2 \
trainer.default_local_dir=/checkpoints \
trainer.save_freq=10 \
trainer.test_freq=10 \
trainer.total_epochs=15 2>&1 | tee verl_demo.log \
trainer.resume_mode=disable
For more details on how dstack works, check out its documentation.
How to debug?
Ray Distributed Debugger VSCode Extension (Recommended)
Starting with Ray 2.39, Anyscale has introduced the Ray Distributed Debugger VSCode extension. Follow the extension’s installation instructions, then add your cluster using the dashboard URL you obtained earlier.
Prerequisites.
Ensure the following are installed (see the extension README for more detail):
Visual Studio Code
ray[default] >= 2.9.1
debugpy >= 1.8.0
Environment Variables.
To enable post‑mortem debugging, set:
export RAY_DEBUG_POST_MORTEM=1
Note
Be sure to remove any legacy flags before starting Ray:
RAY_DEBUG=legacy
–ray-debugger-external
Configuring BreakpointsSet up breakpoint() in your code, and submit job to cluster. Then the extension will show the breakpoint information.
Insert breakpoint() calls into your remote functions.
Submit your job to the cluster.
The extension will detect active breakpoints and display them in VSCode.
Note: Breakpoints are only supported inside functions decorated with @ray.remote.
Launching the Debugger.
Run your job directly from the command line (do not use a launch.json):
python job.py
Attaching to a Breakpoint.
Once the process hits the first breakpoint(), click the Ray Distributed Debugger icon in the VSCode sidebar to attach the debugger.
![]()
Debugging With Multiple breakpoint().
For each subsequent task, first disconnect the current debugger session, then click the extension icon again to attach to the next breakpoint.
Legacy Ray Debugger
Ray has a builtin legacy debugger that allows you to debug your distributed applications. To enable debugger, start ray cluster with
RAY_DEBUG=legacy
and--ray-debugger-external
.
# start head node
RAY_DEBUG=legacy ray start --head --dashboard-host=0.0.0.0 --ray-debugger-external
# start worker node
RAY_DEBUG=legacy ray start --address='10.124.46.192:6379' --ray-debugger-external
Set up breakpoint in your code, and submit job to cluster. Then run
ray debug
to wait breakpoint:

Multi-node training on AMD clusters
If you want to run multi-node training with slurm with Docker/Podman container on AMD Cluster, you can use the following script.
If you encounter any issues in using AMD GPUs running verl, please contact Yusheng Su.
Note
You need to use
podman
ordocker
in the following script. We will release the apptainer script later.If you want to use
podman
, you just replacedocker
withpodman
in the following script.
The script includes the following steps:
SLURM Configuration
Environment Setup
Docker/Podman Container Setup
Ray Cluster Initialization
Data Preprocessing
Model Setup
Training Launch
slurm_script.sh
#!/bin/bash
#SBATCH --job-name=verl-ray-on-slurm
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --mem=200G
#SBATCH --time=30-00:00:00
#SBATCH --gpus-per-node=8
#SBATCH --cpus-per-task=28
#SBATCH --output=../verl_log/slurm-%j.out
#SBATCH --error=../verl_log/slurm-%j.err
#SBATCH --nodelist=gpu-[0,1]
# load necessary modules
### Run this setup
# [Cluster]: Use docker
# docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
##########################################################################
###The following setting should be set in different project and cluster###
##########################################################################
### Project
CONTAINER_NAME="multinode_verl_training"
IMG="verl.rocm"
DOCKERFILE="docker/Dockerfile.rocm"
# echo $PWD
verl_workdir="${HOME}/projects/verl_upstream"
export TRANSFORMERS_CACHE="${HOME}/.cache/huggingface"
export HF_HOME=$TRANSFORMERS_CACHE
### Cluster Network Setting
export NCCL_DEBUG=TRACE
export GPU_MAX_HW_QUEUES=2
export TORCH_NCCL_HIGH_PRIORITY=1
export NCCL_CHECKS_DISABLE=1
# export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
export NCCL_IB_GID_INDEX=3
export NCCL_CROSS_NIC=0
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_PROTO=Simple
export RCCL_MSCCL_ENABLE=0
export TOKENIZERS_PARALLELISM=false
export HSA_NO_SCRATCH_RECLAIM=1
##########################################################################
### For rocm and training script
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export ROCR_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES
# Build and launch the Docker container
srun bash -c "
# Exit on any error
set -e
# Clean up dangling images (images with <none> tag)
docker image prune -f
# Need to pull the docker first
docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
if ! docker images --format "{{.Repository}}:{{.Tag}}" | grep -q "${IMG}"; then
echo \"Building ${IMG} image...\"
docker build -f \"${DOCKERFILE}\" -t \"${IMG}\" .
else
echo \"${IMG} image already exists, skipping build\"
fi
# Removing old container if exists
docker rm \"${CONTAINER_NAME}\" 2>/dev/null || true
# Checking network devices
ibdev2netdev
# Launch the docker
docker run --rm -d \
-e HYDRA_FULL_ERROR=1 \
-e HIP_VISIBLE_DEVICES=${HIP_VISIBLE_DEVICES} \
-e ROCR_VISIBLE_DEVICES=${ROCR_VISIBLE_DEVICES} \
-e CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES} \
-e NCCL_DEBUG=${NCCL_DEBUG} \
-e GPU_MAX_HW_QUEUES=${GPU_MAX_HW_QUEUES} \
-e TORCH_NCCL_HIGH_PRIORITY=${TORCH_NCCL_HIGH_PRIORITY} \
-e NCCL_CHECKS_DISABLE=${NCCL_CHECKS_DISABLE} \
-e NCCL_IB_HCA=${NCCL_IB_HCA} \
-e NCCL_IB_GID_INDEX=${NCCL_IB_GID_INDEX} \
-e NCCL_CROSS_NIC=${NCCL_CROSS_NIC} \
-e CUDA_DEVICE_MAX_CONNECTIONS=${CUDA_DEVICE_MAX_CONNECTIONS} \
-e NCCL_PROTO=${NCCL_PROTO} \
-e RCCL_MSCCL_ENABLE=${RCCL_MSCCL_ENABLE} \
-e TOKENIZERS_PARALLELISM=${TOKENIZERS_PARALLELISM} \
-e HSA_NO_SCRATCH_RECLAIM=${HSA_NO_SCRATCH_RECLAIM} \
-e TRANSFORMERS_CACHE=${TRANSFORMERS_CACHE} \
-e HF_HOME=${HF_HOME} \
--network host \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v \${HOME}:\${HOME} \
-v \${HOME}/.ssh:/root/.ssh \
-w "${verl_workdir}" \
--shm-size 128G \
--name \"${CONTAINER_NAME}\" \
\"${IMG}\" \
tail -f /dev/null
echo \"Container setup completed\"
"
# (Optional): If you do not want to root mode and require assign yuorself as the user
# Please add `-e HOST_UID=$(id -u)` and `-e HOST_GID=$(id -g)` into the above docker launch script.
### Ray launch the nodes before training
# Getting the node names
nodes_array=($(scontrol show hostnames "$SLURM_JOB_NODELIST" | tr '\n' ' '))
head_node=${nodes_array[0]}
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)
# if we detect a space character in the head node IP, we'll
# convert it to an ipv4 address. This step is optional.
if [[ "$head_node_ip" == *" "* ]]; then
IFS=' ' read -ra ADDR <<<"$head_node_ip"
if [[ ${#ADDR[0]} -gt 16 ]]; then
head_node_ip=${ADDR[1]}
else
head_node_ip=${ADDR[0]}
fi
echo "IPV6 address detected. We split the IPV4 address as $head_node_ip"
fi
port=6379
ip_head=$head_node_ip:$port
export ip_head
echo "IP Head: $ip_head"
# make sure we set environment variables before Ray initialization
# If you are using vllm<=0.6.3, you might need to set the following environment variable to avoid bugs:
# export VLLM_ATTENTION_BACKEND=XFORMERS
# Print out all env variables
printenv
echo "Starting HEAD at $head_node"
srun --nodes=1 --ntasks=1 -w "$head_node" \
docker exec "${CONTAINER_NAME}" \
ray start --head --node-ip-address="$head_node_ip" --port=$port \
--dashboard-port=8266 \
--num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
# optional, though may be useful in certain versions of Ray < 1.0.
sleep 10
# number of nodes other than the head node
worker_num=$((SLURM_JOB_NUM_NODES - 1))
for ((i = 1; i <= worker_num; i++)); do
node_i=${nodes_array[$i]}
echo "Debug: Starting worker on node_i = ${node_i}"
if [ -z "$node_i" ]; then
echo "Error: Empty node name for worker $i"
continue
fi
echo "Starting WORKER $i at $node_i"
srun --nodes=1 --ntasks=1 -w "$node_i" \
docker exec "${CONTAINER_NAME}" \
ray start --address "$ip_head" --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
sleep 5
done
# Ray initlization test (See whether any error in the above execution)
echo "Testing Ray initialization in the slurm nodes..."
docker exec "${CONTAINER_NAME}" python3 -c '
import ray
try:
ray.init(address="auto")
print("\n=== Ray Cluster Status ===")
print(f"Number of nodes: {len(ray.nodes())}")
for node in ray.nodes():
print("Node: {}, Status: {}".format(node["NodeManagerHostname"], node["Alive"]))
# print(f"Node: {node}")
ray.shutdown()
print("Ray initialization successful!")
except Exception as e:
print(f"Ray initialization failed: {str(e)}")
'
echo "=== Ray test completed ==="
######
# Run data preprocessing
echo "Starting data preprocessing..."
docker exec "${CONTAINER_NAME}" \
python3 "examples/data_preprocess/gsm8k.py" "--local_dir" "../data/gsm8k"
echo "Starting data preprocessing..."
docker exec "${CONTAINER_NAME}" \
python3 "examples/data_preprocess/math_dataset.py" "--local_dir" "../data/math"
train_files="../data/gsm8k/train.parquet"
val_files="../data/gsm8k/test.parquet"
# Download and test model
echo "Loading model..."
docker exec "${CONTAINER_NAME}" \
python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')"
MODEL_PATH="Qwen/Qwen2-7B-Instruct"
# Set model path after pipeline test
MODEL_PATH="Qwen/Qwen2.5-0.5B-Instruct"
echo "== Data and model loading Done =="
echo "Start to train..."
docker exec "${CONTAINER_NAME}" \
python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')"
MODEL_PATH="Qwen/Qwen2-7B-Instruct"
PYTHONUNBUFFERED=1 srun --overlap --nodes=${SLURM_NNODES} --ntasks=1 -w "$head_node" \
docker exec "${CONTAINER_NAME}" \
python3 -m verl.trainer.main_ppo \
data.train_files=$train_files \
data.val_files=$val_files \
data.train_batch_size=1024 \
data.max_prompt_length=1024 \
data.max_response_length=1024 \
actor_rollout_ref.model.path=$MODEL_PATH \
actor_rollout_ref.model.enable_gradient_checkpointing=False \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.9 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
critic.optim.lr=1e-5 \
critic.model.use_remove_padding=True \
critic.model.path=$MODEL_PATH \
critic.model.enable_gradient_checkpointing=False \
critic.ppo_micro_batch_size_per_gpu=8 \
critic.model.fsdp_config.param_offload=False \
critic.model.fsdp_config.optimizer_offload=False \
algorithm.kl_ctrl.kl_coef=0.0001 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='verl_example' \
trainer.experiment_name='Qwen2.5-32B-Instruct_function_rm' \
trainer.n_gpus_per_node=${SLURM_GPUS_PER_NODE} \
trainer.val_before_train=False \
trainer.nnodes=${SLURM_NNODES} \
trainer.save_freq=-1 \
trainer.test_freq=10 \
trainer.total_epochs=15
Run multi-node training with above slurm_script.sh
Just sbatch your slurm_script.sh
sbatch slurm_script.sh